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A procedure is described for correcting all patterns of three or fewer errors with
the (23, 12) or (24, 12) Golay code. The procedure decodes any 24-bit word in about
26 “steps,” each of which consists of only a few simple operations such as counting
the number of ones in a 12-bit word. The procedure is based on the circulant view-
point introduced by Karlin (1969). In addition it is shown how the (24, 12) Golay
code can be used to correct certain patterns of more than three errors.

I. Introduction

Recently there has been a revival of interest in the use
of binary block codes for deep space telemetry, since such
codes can be used as the “outer” codes in concatenation
schemes. These concatenation schemes are an attractive
method of providing the very low bit error probabilities
which will be required for the nonvideo science experi-
ments on future deep space missions.

One of the most powerful known block codes is the
Golay (24, 12) code, which is known to be capable of
correcting all patterns of three or fewer bit errors. In
Section IT we describe a simple method of actually cor-
recting these errors; this makes the Golay code (perhaps
interleaved enough to deal with the bursts caused by the
“inner” channel) a very attractive candidate for the “outer”
code in certain concatenation schemes. In Section IIT we
show how the Golay code can be used to correct certain
patterns of more than three errors.

iConsultant, Department of Mathematics and Electrical Engineering,
University of California, Berkeley.

JPL TECHNICAL REPORT 32-1526, VOL. XI

Il. The Algorithm

It is known that the parity-check matrix of the (24, 12)
Golay code may be written as

H=|11A

where I is the 12 X 12 identity matrix and

11011100010 1 |
01101110001
10110111000
01011011100
00101101110
00010110111
A= 10001011011
11000101101
11100010110
01110001011
10111000101
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Let A denote the 11 < 11 upper left submatrix of A. Aisa
circulant matrix, each row of which is obtained by a cyclic
right shift of the previous row. If the rows and columns of
A are labeled from 0 to 10, then

~ 1if § — i is 0 or a quadratic residue modulo 11

[

0if j — i is a quadratic nonresidue modulo 11

From this, it is easily seen that A-* = A?,

Each codeword of the (24,12) code may be written
as a row vector C, which satisfies the equation HC? = 0.
If C is transmitted and R is received, then the channel
error pattern is E = R — C. The syndrome of R is the
12-dimensional column vector s defined by

st = HR?

Since HE! = HR! — HC! = HR!, the syndrome of the
received word is the same as the syndrome of the error
word, and this is the sum of the columns of the H matrix
corresponding to the error locations.

Let u, u,, - - * , u,, denote the 12 unit row vectors in 12
dimensions (e.g., u; =-{001000000000]); let A;, Az, -, Ay
denote the rows of A, so that
o =

A,

A,

A

- =

and let A?, A!

t AL, - - -, Al denote the columns of A, so that

A=[ALIAL] - AL

The syndrome s! = HE! may now be represented as

12 24
= 2 Eiu,-+ 2 E1Al

i=1 =13

Similarly,
Als = A'HE = [A!|I]*E
whence
12 24
Als = 2 E;A; + 2 Epu;_,
i=1 i=13
82

If we now assume that |E| =23, then at least one of the
following must be true:

Case I:
[EvnEv, - -, Ea]] =0, |s] =3, z E; =5

Case 1I:

[[Ess Eis, -+ + 5 Eou]| =1, there exists a;, 13=j=24
for which

[s + Aj| =2, §Eiu¢:s+Aj

Case III:

[[E, E,, - - LE]| =0,  [sA|=|Alst| =3,

24 Eiu;_ ., = sA

Case IV:

[[E., E,, - - -, Ei:]] = 1, there exists a;, 1 =j=12
for which

|sA + A;| =2, § Eu; ., =sA+A;

i=13

Hence, the decoding can be accomplished simply by
weighing each of these 26 vectors:

s,s+A,s+A, - ,s+Ap,,
SA,SA + A, sA+ A, - - ,sA+ Ay,

For example, suppose s = 100011010010. Since |s] > 3,
we compute s + A; = s + 110111000101 = 010100010111.
Since |s+A,|>2, we compute [s+A.]| =6>2, [s+A,| =
6>2 [s+A]=8>2 [s+A]|=6>2 |s+ A] =
8>2 |s+ A =4>2 |s+A|=4>2, [s+ A =
1052, [s+As| =8>2, [s+Asu| =6>2, [s+AL]=6>2.
It is now clear that if | E{==3, then |[E,, E,, -, E;;}| > 1
and hence |[E;;, Eu, -+ -, Ezx] | = 1. So we continue
by computing A’s* = sA = 100110100111, |sA| =7 >3,
sA + A, = 010001100010, |sA + A,| =4> 2, |sA + A,| =
6>2, [sA+ A =6>2, [sA+A,|=6>2, [sA+A,|=
8> 2, [sA + As| =4 > 2,5A + A; = 000100010000. Since
[sA+A;| =2, E; =1and E =0000001000000000100010000.

Most of the decoding effort is counting the weights of
the 26 relevant 12-bit vectors. For this reason, this decod-
ing algorithm is particularly well-suited to computers
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‘which have this instruction built in, such as the CDC 6400,
6500, 6600, and 7600. If programmed on a machine which
is unable to count the weight of a 12-bit word in a single
instruction, the easicst way to obtain this quantity is
usually to break up the 12-bit word into pieces (say 2
pieces of 6 bits each or 3 pieces of 4 bits each) and obtain
the weight of each piece by looking it up in a table.

I1l. Decoding More Than Three Errors

The Golay code has 2'* codewords of length 23, and
since (%) + () + (%) + (%) = 2**7*%, every coset contains
one word of weight=3. However, the extended Golay
code, which has 22 codewords of length 24 has (%)
+ (%) = 2" cosets of odd weight and another 2" =
(3 + (&) + % (%) cosets of even weight. It is thus pos-
sible to correct % of the (2%!) possible error patterns of
weight 4. Some of these words of weight 4 correspond to
short bursts. Even though the space channel itself is mem-
oryless, the convolutional code will occasionally make mis-
takes which the Golay code will see as error bursts. For
this reason, short bursts of weight 4 are more probable
error patterns than long bursts of weight 4.

The sum of any two words of weight 4 from the same
coset is a codeword of weight 8. Hence we may gain a
considerable amount of information about which words
of weight 4 are correctable and which are not by studying
the codewords of weight 8.

Since there is exactly one codeword of weight 8 which
has 1s in any given five positions, the total number of
codewords of weight 8 is 24 X 23 X 22 X 21 X 20/8 X7
X 6 X 5X 4 =23x11 X% 23. Each codeword of weight 8
has 23 distinct cyclic shifts. The codewords of weight 8 lie
in 33 sets of 23 codewords each. Furthermore, each code-
word of weight 8 can be mapped into 11 different code-
words by the permutation C (x)—> C (x*') mod (x** + 1),
for i=0,1, - - - ,10. Under this permutation, there are
only 3 equivalence classes of codewords. The 11 members
of each class are listed in Table 1.

The most probable error patterns of weight 4 are those
which are due to the sum of one or more short bursts. The
solid burst of length 5 occurs in codeword number 23 of
Table 1. By inspecting this word, we see that the solid burst
of length 5 in positions 0, 1, 2, 3, 4 lies in the same coset as
the pattern of three isolated errors in positions 7, 10, and
12. Hence, if all error patterns of weight == 3 are cor-
rected, then a solid burst of length 5 cannot be corrected.

JPL TECHNICAL REPORT 32-1526, VOL. Xi

There are five codewords which contain solid bursts in
positions 0, 1, 2, 3. These words may be found as cyclic
shifts of lines numbered 1, 22, 23, 23, and 26 of Table 1.
Since no codeword of weight 8 contains two disjoint solid
bursts of length 4, all solid bursts of length 4 may be cor-
rected by the extended Golay code of length 24.

A burst of length 5 and weight 4 must be of one of the
following three types: 11101, 11011, 10111. Type 11101 is
contained in Table 1 codewords numbered 2, 6, 22, 23, 24,
Type 11011 in codewords numbered 1, 6, 11, 14, 23, and
Type 10111 in codewords numbered 1, 2, 5, 12, 23.

The most probable error patterns of weight four are
those which are due to the sum of one or two short bursts.
These types of error patterns and the codewords of Table 1
which contain them are as follows:

Error type Reference numbers of Table 1 codewords
111 plus 1 1.3,4,5,6,11,12, 17

21, 22, 23, 24, 26, 28, 33
11 plus 11 1,3,4,6,8,9,10,11, 12,14

17, 21, 25, 26, 27, 29, 30, 31, 32, 33

An examination of the conflicts between the goal of
correcting 111 plus 1 and 11 plus 11 reveals the following
dangerous codewords through positions 0, 1, 2:

Codeword Reference
number
01,2 789 @@, @@ 4
0,12, (6), 16,17, 18 4
01,2, 45 (9, 1819 6

0,1,2, 10,11,13,14, 11
01,2, 56 1213 (@ 33

This shows that any pair of two sets of double adjacent
errors can be corrected and that one can also correct any
error pattern of the type 111 plus 1 (i.e., a solid burst of
length 3 and an additional isolated error) unless the iso-
lated error follows the burst by 6, 9, 10, 13, 17, 15, or 19
digits. If the isolated error follows the burst of length 3
by 9, 19, or 15, the syndrome is the same as for a pair of
bursts of length 2; if the isolated error follows the burst of
3 by 13, 17, 6, or 10, then there is ambiguity with another
error pattern of the same type.
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Table 1. One codeword of weight 8 from each of the

33 cyclic equivalence classes

Reference
number

Positions of 1s in the codeword

Lengths (origins)
of solid bursts

O 00 13> U W N

o
—_ 0

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

[ B B o I o I BN = BN = I =R == R e S 00 Q0 Q0o oo o0

(=R e ool el N -]

8§ 12 13 7 5 10 11
16 1 3 14 10 20 22
9 2 6 5 20 17 21
18 4 12 10 17 11 19
13 8 1 20 11 22 15
3 16 2 17 22 21 7
6 9 4 11 21 19 14
12 18 8 22 19 15 5
1 13 16 21 15 7 10

2 3 9 19 7 14 20
4 6 18 15 14 5 17
2 4 6 5 10 11 o
4 8 12 10 20 22 oo
8 16 1 20 17 21
66 9 2 17 11 19 oo
9 18 4 11 22 15 oo
18 13 8 22 21 7 oo
13 3 16 21 19 14 o
3 6 9 19 15 5 o
6 12 18 15 7 10 o
12 1 13 7 14 20 o
1 3 14 5 17
1 2 4 3 12 7 10
2 4 8 6 1 14 20
4 8 16 12 2 5 17
8§ 16 9 1 4 10 11

16 9 18 2 8 20 22
9 18 13 16 17 21
18 13 3 8 9 11 19
13 3 6 16 18 22 15
3 6 12 9 13 21 7
6 12 1 18 3 19 14
12 1 2 13 6 15 5

>

4(10) 2(7)
3(22)
25)  2(20)
3(10) 3(17)
3(22)
3(21) 2(2) 2(16)
2(18) 2(22)
2(0)  2(15)
22)  2(19)
3(4)  2(14) 2(17)
3(4)
2(22)
2(16) 2(20)
2(18)
9(22)
321) 2(7)
2(13)
2(5)
2(6)
3(12) 2(0)
4(0)

2(10)

2(0)

50)
3(0)
2(4)
48)
2(8)
3(16)
2(8) 2(18)
2(15) 2(22)
2(6) 2(12)
2(0) 2(18)
3(0)  2(5)

2(16)
2(0)
2(22)

2(12)
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